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Abstract
The reflection of x-rays from a semi-infinite water target, for energies
ranging from 10 to 60 keV, often used in x-ray diagnostics, is investigated by
Monte Carlo simulation. The same process was also treated analytically as
the classical albedo problem for isotropic scattering without energy loss.
Good agreement of results for the angular distribution of reflected photons
of the two approaches is obtained for higher photon energies from the
energy range considered. Multiple collision scattering dominates at higher
energies, leading to isotropization of the photon distribution. Discrepancies
between the isotropic scattering model and Monte Carlo results appear at the
lower part of the energy range. Monte Carlo results show that at these
energies photon reflection is governed mainly by single collisions and that
these discrepancies are caused by anisotropy of the distribution of single
backscattered photons. It is shown that the inclusion of the anisotropy of
single Compton backscattering in the analytical model greatly improves the
agreement with Monte Carlo results.

1. Introduction

Under certain idealizations and simplifications it is possible
to derive theoretically important relations that describe the
behaviour of photons reflected from a half space. Within a
model that assumes multiple isotropic scattering of photons
without energy loss the angular distribution of backscattered
photons is given by an exact solution [1, 2],

R(µ0, µ) = ω

2

µ

µ + µ0
H(ω, µ0)H(ω, µ). (1)

Here, µ0 and µ are the directional cosines of the incident and
reflected photons with respect to the target surface normal.
H(ω, µ) is the H function that is tabulated for various values
of the variable µ and the parameter ω [1, 3]. The scattering
medium is characterized only through the parameter ω, which
is given by

ω = σR

σR + σa
, (2)

3 Author to whom any correspondence should be addressed.

where σR is the total cross section for Compton scattering and
σa is the total cross section for photoabsorption. Both cross
sections are calculated per atom.

For large ω (ω ≈ 1), the reflection is dominated by
photons that have scattered so many times that the correlation
with the original preferred direction is lost, so that the
distribution of photons becomes isotropic in character, and due
to this the main assumptions of the model are realistic in this
case. In the opposite situation, when ω is small (ω � 1), the
reflection is essentially determined by single backscattering
events and depends now on the details of the differential cross
section that are not included in the above model. These model
considerations are confirmed by the results of Monte Carlo
simulation for x-ray reflection from water given in table 1
below. We present the total number of reflected photons as
a function of photon incident energy, classified according to
the number, n, of collisions suffered (n = 1, 2, 3, 4 and n > 4).
The history of 100 000 photons incident normally on a water
target was followed.

Looking at table 1, one can see that at lower energies
the single collision reflection is absolutely dominant. With
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Table 1. Reflection of photons from water for different energies, obtained by Monte Carlo simulation. The total number of photons
considered was 100 000, n represents the number of collisions before reflection and na is the number of absorbed photons.

E [keV] 10 15 20 30 40 50 60

n = 1 1 321 3 049 5 504 10 007 12 221 13 283 13 692
n = 2 57 367 1 055 3 836 5 954 7 285 8 076
n = 3 4 51 287 1 590 3 476 4 672 5 494
n = 4 0 8 79 744 2 134 3 184 3 970
n > 4 0 2 29 860 4 451 10 435 16 925
na 98 618 96 523 93 046 82 963 71 764 61 141 51 843

increasing energy, the number of photons reflected in multiple
scattering events increases, so that at energies near 60 keV, this
kind of reflection dominates. Because of this, it is of interest
to develop an analytic model that deals with these two extreme
situations. The development of such a model which takes into
account the scattering anisotropy, in particular at low energies,
will be given in the next section.

2. Analytical model for reflection of photons from a
half space

A scheme of the single collision backscattering event is shown
in figure 1. A photon with energy E0 is incident at an angle α0

(cos α0 = µ0) with respect to the target surface normal and
penetrates the target. The probability for the initial photon
passing the distance l along the straight line without any
interaction is taken into account by the exponential factor
exp(−nσTl), where σT is the total cross section for attenuation
of the beam per atom, σT = σR + σa, and n is the number
of atoms per unit volume. In a Compton collision with an
electron of the target atom, which occurs at path length x/µ0,
where x is the inward coordinate normal to the surface, the
photon is scattered through the angle θ , and after travelling
the path length x/µ, it leaves the target. Here, µ = cos α,
and α and ϕ are the polar and azimuthal angles of the photon
exit direction with respect to the target surface normal. The
scattering angle, θ , is related to the directional cosines, µ0 and
µ, and azimuth, ϕ, by

cos θ = −µ0µ +
√

1 − µ2
0

√
1 − µ2 cos ϕ. (3)

Within the single collision model, the total probability,
RS(µ0, µ, ϕ)dµ dϕ, for the observed photon to be backscat-
tered into the solid angle dµ dϕ, including all penetration
depths x through an infinitely thick target, is given by

RS(µ0, µ, ϕ)dµ dϕ = n
dσ(θ)

d�
dµ dϕ

×
∫ ∞

0
e−nσTx((1/µ0)+(1/µ)) dx

µ0
. (4)

Here dσ(θ)/d� is the differential cross section for photon
scattering calculated per atom, and d� is the elementary solid
angle.

The probability, RS(µ0, µ) dµ, for a photon to be reflected
with directional cosines between µ and µ + dµ, irrespective
of the azimuth, follows by integration of equation (4)
over all azimuthal angles. Performing integration over x in

Figure 1. Geometry of the single backscattering event.

equation (4), the quantity RS(µ0, µ) may be represented in
the form

RS(µ0, µ) =
∫ 2π

0
R(µ0, µ, ϕ)dϕ

= µ

µ0 + µ

1

σT

∫ 2π

0

dσ(θ)

d�
dϕ. (5)

Assuming that the scattering is isotropic, one has

dσ

d�
= σR

4π
, (6)

where σR is the total Compton scattering cross section.
Inserting equation (6) into equation (5), one obtains the
isotropic distribution of photons backscattered in single
collisions,

RS(µ0, µ) = 1

2

µ

µ0 + µ
ω. (7)

The same result follows from equation (1) in the single collision
region: for small values of the parameter ω(ω � 1), for any
value of the variable µ, H(ω, µ) ≈ 1 and equations (1) and (7)
become identical. For the single collision region ω � 1,
instead of using the isotropic approximation from equation (6),
one can include the differential cross section given by the
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Figure 2. Angular distribution of backscattered photons for photon energies E = 10 keV (left panel) and E = 60 keV (right panel),
calculated for normal incidence (µ0 = 1) (a), oblique incidence (µ0 = 0.5) (b) and grazing incidence (µ0 = 0.1) (c). ——, results from
isotropic model (equation (1));. . . . . . , results according to equation (10), which includes single backscattering anisotropy. Histograms are
from Monte Carlo simulations.

Klein Nishina formula [4], which at low energies gets a
simpler form:

dσ(θ)

d�
= 3

16π
σR(1 + cos2 θ)

(
1 +

2γ

1 − 2γ
cos θ

)
, (8)

where γ is the ratio of the photon incident energy to the electron
rest energy. By inserting equation (8) for the differential cross
section into equation (5) after integration, one obtains a more
accurate expression for the angular distribution of reflected

photons in the single collision approximation

Ra
S(µ0, µ) = ω

16

µ

µ0 + µ

{
(1 − 3µ2

0)(1 − 3µ2) + 8

−3

5

(
2γ

1 − 2γ

)
µ0µ[(3 − 5µ2

0)(3 − 5µ2) + 16]

}
. (9)

This is an improved result compared with equation (7) because
here the assumption of isotropic scattering is removed.

The model exact isotropic distribution given by
equation (1) may be developed in a series in powers of ω, where
the term containing the factor ωn represents the contribution of
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photons reflected through n collisions. In this model, all these
collisions are described by the isotropic cross section given by
equation (6). The first term of this series, which is linear in ω,
is given by equation (7). Replacing this term with the accurate
expression given by equation (9), in which the anisotropy of
Compton scattering is taken into account, we obtain

Ra(µ0, µ) = ω

2

µ

µ0 + µ
H(ω, µ0)H(ω, µ)

+[Ra
S(µ0, µ) − RS(µ0, µ)]. (10)

Formula (10) covers the whole range of ω. For small ω it
tends to the formula (9), while for the high ω it does not differ
much from formula (1). Formula (10) represents our main
theoretical result. It improves the isotropic model by inclusion
of anisotropy of Compton scattering in single backscattered
events. The importance of this refinement will be seen in the
next section.

3. Results and discussion

The most characteristic results of all the above described
approaches are given in figure 2. The model results obtained
from equations (1) and (10) are compared with the results of
Monte Carlo simulation for water as a scatterer. We have
chosen two extreme points of our energy interval, 10 and
60 keV, and give the results for different photon incidence.

For 10 keV incident photon energy, the parameter ω is
very small (ω = 0.0806), and reflection is essentially de-
termined by single backscattering events, and in this case it
depends on the details of the differential cross section because
of the lack of multiple scattering isotropization. This explains
the discrepancies between the isotropic distribution calculated
from equation (1) (the full lines) and the Monte Carlo his-
tograms visible in the left panel of figure 2. The dashed lines,
obtained from equation (10), greatly improve the agreement
with the Monte Carlo results, both in the shape of the dis-
tribution and in the magnitude. Note that this equally holds

for normal, oblique and grazing incidence. So, replacing
the contribution of single scattering events described by an
isotropic cross section with those described by a Klein Nishina
cross section improves the results for the angular distribution
for different angles of incidence. This agreement further
substantiates the claim that single backscatter events are the
predominant mode of scatter at lower energies.

In figure 2, on the right panel, the angular distribution of
reflected photons is presented for the photon energy of 60 keV
and different angles of photon incidence. At 60 keV photon
energy, the parameter ω is large (ω = 0.936). It is seen that,
although the isotropic and anisotropic analytical results are
close, the dashed curves tend to improve the agreement with
the results of the Monte Carlo simulation for different photon
incidence.

Altogether, our results show that for energies 10–60 keV,
often used in x-ray diagnostics, the improved formula (10)
gives good agreement with simulation data. Therefore, the
simple anisotropic model developed in this work, may be
considered as reliable and sufficiently accurate in this energy
range, both for normal and oblique photon incidence.
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